Name: \qquad Date: \qquad

1. Choose the statement(s) which is (are) true of a normal distribution.
I. it is symmetric about the mean
II. the shape of the graph of a normal distribution is mound-shaped
III. 99.7% of the data is within 2 standard deviation of the mean
A. I only
B. III only
C. I and II only
D. II and III only
2. Simplify: $\frac{x^{2}-x-6}{x^{2}-5 x+6}$
A. -3
B. -1
C. $\frac{x+2}{x-2}$
D. $\frac{x-2}{x+2}$
3. A club has 30 male and 70 female members. If a committee of 30 is being formed by random selection, to ensure that there is a proportional representation of males and females in the club a stratified random sample is used to select the committee. What is the number of males that must be chosen?
A. 9
B. 25
C. 15
D. 16
4. Find the sum of the first 7 terms of the geometric series $3+6+12+\cdots$.
A. 99
B. 189
C. 381
D. 765
5. If $(a+b i)+(2-i)=3+i$, find the value of b.
A. 2
B. 0
C. 1
D. $\frac{1}{2}$
6. A 20-acre orchard is planted with apple and peach trees. At most $\$ 10,000$ can be spent on planting costs. Planting cost for apple trees $\$ 400 /$ acre and for peach trees $\$ 1000 /$ acre. Choose the best graph that shows the area of each crop that can be planted.
A.

B.

C.

D.

7. In the figure, $\overline{N Q}$ is parallel to $\overline{O P}$ and $N Q=4$, $O P=6$, and $M Q=8$. How long is $\overline{M P}$?
A. 4
B. 10
C. 12
D. 16
8. Given: $V Y=W Y$
$V X=W Z$
Y is the midpoint of $\overline{X Z}$
Prove: $\quad \triangle V X Y \cong \triangle W Y Z$

statement	reason
Y is the midpoint of $\overline{X Z}$	(1)
$X Y=Y Z$	(2)
$V Y=W Y$	(3)
$V X=W Z$	(4)
$\triangle V X Y \cong \triangle W Y Z$	(5)

In the above proof, what is reason (2)?
A. definition of angle midpoint
B. definition of midpoint
C. definition of bisector
D. definition of perpendicular bisector
9. Use synthetic division to find the remainder when $x^{4}+2 x^{3}-4 x^{2}-5$ is divided by $x+3$.
A. -14
B. 14
C. 4
D. 94
10. Consider the graph of $y=-3|x|$. What will be the effect on the graph if -3 is replaced with 3 ?
A. a flip over the x-axis
B. a horizontal shift of 1 unit to the left
C. a vertical shift
D. no change
11. You are creating a cheese log display at the deli. Each \log has a diameter of 4 inches. When viewed from the end, the display forms the pyramid pattern shown below.

If you use 45 cheese logs, what is the approximate height of the display?
A. 28 in
B. 32 in
C. 36 in
D. 42 in
12. In two petri dishes, a sample of bacteria covers an area of $5 \mathrm{~mm}^{2}$. Each dish contains a different growth medium. The different growth rates-in mm^{2} per day-are approximated by the functions:

Dish 1: $f(t)=5+\left(\frac{\pi}{2}\right) t^{2}$
Dish 2: $g(t)=5+\left(\frac{\pi}{2}\right)^{1.3 t}$
Graph the results for the first 10 days.
On which day does the area in Dish 2 begin to exceed Dish 1 ?

A. Day 5
B. Day 6
C. Day 8
D. Day 9
13. Find the sum of the first 5 terms of the geometric series $1+3+9+\cdots$.
A. 40
B. 121
C. 364
D. 1093
14. Tracy wants to use an expression that will give her an odd integer. Which expression should she use?
A. $5 x+1$
B. $4 x+1$
C. $3 x$
D. x^{2}
15. Given the graph, determine the number of distinct real solutions.
A. no solution
B. one solution
C. two solutions
D. not enough information

16. When $2 x^{2}+x+c$ is divided by $x+k$, the quotient is $2 x+5$ and the remainder is 7 . Find c and k.
A. $k=1, c=-3$
B. $k=-5, c=-6$
C. $k=2, c=3$
D. $k=-2, c=-3$
17. Express $\frac{11 \pi}{3}$ radians in degrees.
A. 145°
B. 330°
C. 630°
D. 660°
18. Which is an equation for the graph shown?
A. $y=\cos \frac{2 \pi}{3} x$
B. $y=\cos 3 x$
C. $y=\cos \frac{1}{3} x$
D. $y=\cos \frac{1}{2} x$

19. If X is normally distributed with $\mu=155$ and $\sigma=11$, find $\mathrm{P}(145<X<159)$.
A. 0.3133
B. 0.5255
C. 0.7877
D. 0.4592
20. Find the quotient and remainder of $\left(x^{3}+8 x^{2}+19 x+13\right) \div(x+3)$.
A. $\left(x^{2}+5 x+4\right) \mathrm{R}-1$
B. $\left(x^{2}+11 x+52\right) \mathrm{R} 169$
C. $\left(x^{2}+5 x+4\right) \mathrm{R} 1$
D. $\left(x^{2}+11 x+52\right) \mathrm{R}-1$
21. The circle shown has an equation in the form of $(x-h)^{2}+(y-k)^{2}=1$.

If the values of h and k were doubled, which of the following is the graph of the new circle?

A. A
B. B
C. C
D. D
22. Find the center and radius of the circle $x^{2}+y^{2}+4 x-6 y+12=0$.
A. $(-2,3) ; 2 \sqrt{3}$
B. $(2,-3) ; 2 \sqrt{3}$
C. $(-2,3) ; 1$
D. $(2,-3) ; 1$
23. What should be added to both sides of the equation to complete the square for $x^{2}+4 x=5$?
A. -4
B. -2
C. 2
D. 4
24. Write an expression to represent any angle coterminal with the angle 170° (n is an integer).
A. $360^{\circ}+n\left(170^{\circ}\right)$
B. $170^{\circ}+n\left(360^{\circ}\right)$
C. $170^{\circ}+n\left(180^{\circ}\right)$
D. $n\left(240^{\circ}\right)$
25. Express $\tan \left(-310^{\circ}\right)$ as a function of a positive acute angle in terms of $\tan x$.
A. $\tan 50^{\circ}$
B. $-\tan 40^{\circ}$
C. $-\tan 50^{\circ}$
D. $\tan 40^{\circ}$
26. Convert to radians: 315°
A. $\frac{7 \pi}{4}$
B. $\frac{5 \pi}{4}$
C. $\frac{11 \pi}{6}$
D. $\frac{5 \pi}{3}$
27. Solve: $2=\frac{\sqrt{2(3-x)}}{4}$
A. -13
B. -29
C. -32
D. \varnothing
28. In circle $O, \overline{T S}$ is tangent to the circle at S and $m \angle O T S=20^{\circ}$. What is the measure, in degrees, of minor arc $\overparen{R S}$?
A. 70
B. 110
C. 120
D. 160

29. How many solutions are shown by the graph of the quadratic function?

A. zero
B. one
C. two
D. three
30. Solve $a(x)=b(x)$ for x :

$$
a(x)=-4 x-11 \quad b(x)=-\frac{1}{2} x+3
$$

A. 5
B. 4
C. 1
D. -4
31. Given the trapezoid shown, express the area in terms of x.
A. $x^{3}+5 x-5$
B. $3 x+5$
C. $2 x+3$
D. $x^{2}+3 x+2$

32. Given: $A B=D C$

$$
\overline{A B} \| \overline{D C}
$$

Prove: $\quad m \angle D A C=m \angle B C A$

statement	reason	
Join $\overline{A C}$		
$\overline{A B} \\| \overline{D C}$	(1)	
$A B=D C$	(2)	
$m \angle B A C=m \angle D C A$	(3)	
$A C=A C$	(4)	
$\triangle A D C \cong \triangle C B A$	(5)	
$m \angle D A C=m \angle B C A$	(6)	

In the above proof, what is reason (6)?
A. CPCTC
B. ASA
C. SAS
D. alternate interior angles
33. For the graph shown, what is the equation in the form $y=a \cos b(x-c)+d$?

A. $2 \cos \left(x-\frac{\pi}{6}\right)+5$
B. $2 \cos 2\left(x-\frac{\pi}{6}\right)+5$
C. $2 \cos 2\left(x+\frac{\pi}{6}\right)+5$
D. $2 \cos \left(x+\frac{\pi}{6}\right)+5$
34. Given: $\quad \overline{A B} \| \overline{D C}$

$$
A B=D C
$$

Prove: $\quad m \angle D A C=m \angle B C A$

Statement	Reason	
$\overline{A B} \\| \overline{D C}$	(1)	
$A B=D C$	(2)	
$m \angle B A C=m \angle D C A$	(3)	
$A C=A C$	(4)	
$\triangle A D C \cong \triangle C B A$	(5)	
$m \angle D A C=m \angle B C A$	(6)	

In the above proof, what is reason (6)?

A. CPCTC
B. SSS
C. vertical angles
D. alternate interior angles
35. What is the inverse of $y=4 x^{2}+2$?
A. $y=\frac{x+2}{4}$
B. $y= \pm \frac{\sqrt{x+2}}{4}$
C. $y= \pm \frac{\sqrt{x+2}}{2}$
D. $y= \pm \frac{\sqrt{x-2}}{2}$
36. What impact does a have on the graph of $f(x)=a|x+4|-5$ if the value of a changes from $a=1$ to $a=2$.
A. The vertex remains unchanged, but the slopes of the two sides become steeper.
B. The vertex changes from $(-4,-5)$ to $(-8,-5)$.
C. The graph is unchanged.
D. The vertex remains unchanged, but the slopes of the two sides are not as steep.
37. Given:

$$
g(x)=x(x+5)(x-5)(x+1)^{2}
$$

Which is not a solution to the function?
A. -5
B. 0
C. $\frac{1}{2}$
D. 5
38. If $m \angle N O M=60^{\circ}$, then what is the length of the minor arc $\overparen{N M}$?
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 2π

39. Multiply: $(3 x+2)(3 x-2)$
A. $3 x^{2}-2$
B. $9 x^{2}-4$
C. $9 x^{2}-12 x+4$
D. $9 x^{2}+12 x-4$
40. Given: $\overline{W Y}$ is the angle bisector of $\angle X W Z$ $m \angle X Y W=m \angle Z Y W$

Prove: $\quad \triangle W X Y \cong \triangle W Z Y$

statement	reason
$\overline{W Y}$ is the \angle bisector of $\angle X W Z$	(1)
$m \angle X W Y=m \angle Z W Y$	(2)
$W Y=W Y$	(3)
$m \angle X Y W=m \angle Z Y W$	(4)
$\triangle W X Y \cong \triangle W Z Y$	(5)

In the above proof, what is reason (1)?

A. given
B. definition of angle bisector
C. definition of a perpendicular bisector
D. definition of a perpendicular
41. Solve for $x: 3 x^{2}-11 x+6=0$
A. $\frac{2}{3},-5$
B. $\frac{1}{3},-3$
C. $3, \frac{2}{3}$
D. $-5,3$
42. Complete the square to find the standard form for this circle:
$x^{2}-10 x+y^{2}+14 y-7=0$
A. $(x+5)^{2}+(y+7)^{2}=9$
B. $(x-5)^{2}+(y+7)^{2}=81$
C. $(x-5)^{2}+(y-7)^{2}=9$
D. $(x+5)^{2}+(y-7)^{2}=81$
43. Triangle $A B C$ is a right triangle. $\overline{D E}$ is perpendicular to $\overline{A C}$ and bisects $\overline{A C}$. If $A B=10$ and $B C=24$, then how long is $\overline{D E}$?
A. 5
B. $5 \frac{5}{12}$
C. $10 \frac{2}{5}$

D. $33 \frac{4}{5}$
44. The equation $x^{2}+2 x=3(x+2)$ has two solutions. What are they?
A. $-4,4$
B. $-3,5$
C. $-3,4$
D. $-2,3$
45. What is the amplitude of the graph defined by $y=2 \cos \frac{x}{2}$?
A. 2
B. $\frac{1}{2}$
C. 1
D. 4
46. If $(-3,1)$ is in the function $f(x)$, then which of the following points will be in the function $f^{-1}(x)$?
A. $(1,-3)$
B. $(3,1)$
C. $(-1,3)$
D. $(-1,-3)$
47. The grid shows the coordinates of one point on the graph of $y=\sin x$.

Write the x-coordinates of four other points on the graph that have the same y-coordinate as this point.

A. $80^{\circ}, 260^{\circ}, 280^{\circ}, 440^{\circ}$
B. $-280^{\circ},-260^{\circ}, 80^{\circ}, 440^{\circ}$
C. $-80^{\circ},-100^{\circ},-260^{\circ},-280^{\circ}$
D. $-100^{\circ}, 80^{\circ}, 260^{\circ}, 440^{\circ}$
48. Determine the solution set of the equation $x\left(x^{2}+1\right)\left(x^{2}-4\right)=0$.
A. $\{-2,-1,1,2\}$
B. $\{-2,-1,0,1,2\}$
C. $\{-2,0,2\}$
D. $\{0,1,-1\}$
49. Express the product in standard form.

$$
(5-2 i)(3+4 i)
$$

A. $23+14 i$
B. $23-14 i$
C. $7+14 i$
D. $-7-14 i$
50. Given: $\overline{V T}$ bisects $\overline{R W}$ $\overline{R W}$ bisects $\overline{T V}$

Prove: $\quad \triangle R S V \cong \triangle W S T$

Statement	Reason
$\overline{V T}$ bisects $\overline{R W}$	(1)
$R S=W S$	(2)
$m \angle R S V=m \angle W S T$	(3)
$\overline{R W}$ bisects $\overline{T V}$	(4)
$T S=V S$	(5)
$\triangle R S V \cong \triangle W S T$	(6)

In the proof, what is the reason for (6)?
A. AAA
B. AAS
C. SAS
D. SSS

51. Consider solving $x^{2}+14 x+3=0$ by completing the square.

$$
x^{2}+14 x+\ldots=-3+
$$ What is the number that goes in the blanks?

A. -49
B. -21
C. 21
D. 49
52. A circle has a circumference of 12 cm . The measure of a central angle of the circle is 60 degrees. What is the length of the arc associated with this angle?
A. 1 cm
B. 2 cm
C. 4 cm
D. 6 cm
53. P is a point on the terminal arm of angle θ in standard position. Suppose $\theta=-750^{\circ}$. Where is P located?
A. in quadrant I
B. in quadrant III
C. in quadrant IV
D. on the positive y-axis
54. In the figure. $R S=6, R T=4$, and $T U=6$. What is the length of $\overline{U V}$?
A. 15
B. 10
C. 9
D. not enough inforn

55. Given the graph of $g(x)=f(x)-7$. What is the name for the parent function $f(x)$?

A. linear
B. exponential
C. square root
D. quadratic
56. In the diagram, $\overline{C B}$ contains the center of the circle, $m \angle A C B=40$ and $\overparen{A C}$ has a length of 10π units. What is the length of $\overline{C B}$?
A. 24 units
B. 28 units
C. 36 units
D. 42 units

57. The equation of a circle is in the form:

$$
(x-h)^{2}+(y-k)^{2}=25
$$

If the circle is centered in Quadrant II, what must be true of h and k ?
A. $\quad h>0$ and $k>0$
B. $h<0$ and $k<0$
C. $h<0$ and $k>0$
D. $h>0$ and $k<0$
58. Given: $\overline{A C}$ and $\overline{B D}$ bisect each other

Prove: $\quad \overline{A D} \| \overline{B C}$

Which of the following statements is not needed, if the proof makes use of the other three?

A. $\triangle A E D \cong \triangle C E D$
B. $A B=D C$
C. $m \angle A E B=m \angle D E C$
D. $A E=E C$ and $D E=E B$
59. Convert x degrees to radians.
A. $\frac{\pi}{180 x}$
B. $\frac{\pi x}{180}$
C. $\frac{180}{\pi x}$
D. $\frac{90}{\pi x}$
60. Find the value of y.
A. 32
B. 36
C. 51
D.
not enough info

61. What type of function has the possibility of one x-intercept?
I. linear
II. quadratic
III. absolute value
A. I only
B. III only
C. II and III only
D. I, II, and III
62. Three students took 3 different kinds of tests with the following results:

Marco scored 125	Amy scored 97	Monica scored 257
$\bar{x}=111$	$\bar{x}=85$	$\bar{x}=233$
$\sigma=12$	$\sigma=9$	$\sigma=21$

Who has the lowest relative score?
A. Monica
B. Amy
C. Marco
D. Marco and Amy
63. The graph of $y=(x-4)^{2}$ is shown below.

What is the minimum y-value graphed?
A. 4
B. 1
C. 0
D. 6
64. What is the equation of the inverse of $y=\frac{3}{x+2}$?
A. $y=\frac{3}{x}-2$
B. $y=\frac{1}{3} x+\frac{2}{3}$
C. $y=-\frac{3}{x+2}$
D. $y=-\frac{3}{x}-\frac{3}{2}$
65. A survey of a random sample of voters predicts that candidate A will receive 51% of the vote, candidate B will receive 50% of the votes and candidate C will get 53% of the votes. The margin of error is $+5 \%$ to -5%. Which statement is correct about the percent of votes that the candidates might get?
A. Candidate C will definitely get the highest percentage.
B. Candidate A will get between 46% and 56% of votes.
C. Candidate B will not get the highest percentage of votes.
D. All of the above statements are correct.

Final Exam Pre-Assesment 05/24/2016
1.

Answer: C
Objective: S.ID. 4
2.

Answer: C
Objective: A.APR. 6
3.

Answer: A
Objective: S.IC. 4
4.

Answer: C
Objective: A.SSE. 4
5.

Answer: A
Objective: N.CN. 2
6.

Answer: B
Objective: A.CED. 3
7.

Answer: C
Objective: G.SRT. 5
8.

Answer: B
Objective: G.CO. 10
9.

Answer: A
Objective: A.APR. 2
10.

Answer: A
Objective: F.BF. 3
11.

Answer: B
Objective: G.MG. 3
12.

Answer: C
Objective: F.LE. 3
13.

Answer: B
Objective: A.SSE. 4
14.

Answer: B
Objective: N.RN. 3
15.

Answer: C
Objective: F.IF. 4
16.

Answer: D
Objective: A.APR. 2
17.

Answer: D
Objective: F.TF. 1
18.

Answer: B
Objective: F.TF. 5
19.

Answer: D
Objective: S.ID. 4
20.

Answer: C
Objective: A.APR. 2
21.

Answer: D
Objective: G.GPE. 1
22.

Answer: C
Objective: G.GPE. 1
23.

Answer: D
Objective: A.REI.4A
24.

Answer: B
Objective: F.TF. 2
25.

Answer: A
Objective: F.TF. 2
26.

Answer: A
Objective: F.TF. 1
27.

Answer: B
Objective: A.REI. 2
28.

Answer: B
Objective: G.C. 5
29.

Answer: C
Objective: F.IF. 4
30.

Answer: B
Objective: A.REI. 11
31.

Answer: D
Objective: A.APR. 1
32.

Answer: A
Objective: G.CO.11
33.

Answer: B
Objective: F.TF. 5
34.

Answer: A
Objective: G.CO. 10
35.

Answer: D
Objective: F.BF.4A
36.

Answer: A
Objective: F.BF. 3
37.

Answer: C
Objective: A.APR. 3
38.

Answer: C
Objective: G.C. 5
39.

Answer: B
Objective: A.APR. 1
40.

Answer: A
Objective: G.CO. 10
41.

Answer: C
Objective: A.REI.4B
42.

Answer: B
Objective: G.GPE. 1
43.

Answer: B
Objective: G.SRT. 5
44.

Answer: D
Objective: A.REI.4B
45.

Answer: A
Objective: F.TF. 5
46.

Answer: A
Objective: F.BF.4A
47.

Answer: B
Objective: F.IF. 4
48.

Answer: C
Objective: A.APR. 3
49.

Answer: A
Objective: N.CN. 2
50.

Answer: C
Objective: G.CO. 10
51.

Answer: D
Objective: A.REI.4A
52.

Answer: B
Objective: G.C. 5
53.

Answer: C
Objective: F.TF. 2
54.

Answer: C
Objective: G.SRT. 5
55.

Answer: D
Objective: F.BF. 3
56.

Answer: C
Objective: G.C. 5
57.

Answer: C
Objective: G.GPE. 1
58.

Answer: B
Objective: G.CO. 11
59.

Answer: B
Objective: F.TF. 1
60.

Answer: C
Objective: G.SRT. 5
61.

Answer: D
Objective: F.IF. 4
62.

Answer: A
Objective: S.ID. 4
63.

Answer: C
Objective: F.IF. 4
64.

Answer: A
Objective: F.BF.4A
65.

Answer: B
Objective: S.IC. 4

